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Abstract

In this paper we propose a distributed message-passing algorithm for inference in large scale graphical models. Our
method can handle large problems efficiently by distributing and parallelizing the computation and the memory requirements.
The convergence and optimality guarantees of recently developed message-passing algorithms are preserved by introducing
new types of consistency messages, sent between the distributed computers. We demonstrate the effectiveness of our approach
in the task of stereo reconstruction from high-resolution imagery, and show that inference is possible with more than 200
labels in images larger than 10 MPixel. In this supplementary material we provide proofs for the claims in the paper.

1. Proof of Claim 1
The problem of finding the maximum a-posteriori assignment (MAP) via an LP relaxation with entropy barrier functions

and an encoded distributed architecture can be expressed as follows:

max
∑
s∈GP

 ∑
α∈Gs,xα

bsα(xα)θ̂α(xα) +
∑

i∈Gs,xi

bsi (xi)θi(xi)

+ ε
∑
s∈GP

(∑
α∈Gs

ĉαH(bsα) +
∑
i∈Gs

ciH(bsi )

)
(1)

subject to:

∀s, i, xi, α ∈ N(i),
∑

xα\xi

bsα(xα) = bsi (xi) (2)

∀s, α ∈ NP(s),xα, bsα(xα) = bα(xα) (3)

Claim 1 Set νs→α = 0 for every α 6∈ GP . Then the following program is the dual program for the distributed convex belief
propagation in (1):

∑
s,α∈Gs

εĉα ln
∑
xα

exp


θ̂α(xα) +

∑
i∈N(α)∩s

λi→α(xi) + νs→α(xα)

εĉα

+
∑
i

εci ln
∑
xi

exp

(
θi(xi)−

∑
α∈N(i) λi→α(xi)

εci

)

subject to the constraints
∑
s∈NP(α) νs→α(xα) = 0.

Proof: We first note that the constraints given in Eq. (2) have to hold ∀s, α ∈ Gs, i ∈ N(α) ∩ s, xi. Similarly, the
constraints in (3) hold ∀α, s ∈ NP(α),xα.
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Using those equivalences and incorporating Lagrange multipliers λi→α(xi) and νs→α(xα) for the constraints (2) and (3)
respectively, the Lagrangian L for the program in (1) is given by

L =
∑
s,i∈Gs

εciH(bsi ) +
∑
xi

bsi (xi)

θi(xi)− ∑
α∈N(i)

λi→α(xi)

+

+
∑

s,α∈Gs

εĉαH(bsα) +
∑
xα

bsα(xα)

θ̂α(xα) +
∑

i∈N(α)∩s

λi→α(xi) + νs→α(xα)


−

∑
α,s∈NP(α),xα

bα(xα)νs→α(xα). (4)

Note, that we added terms νs→α(xα) ∀s, α ∈ Gs for notational convenience. We therefore require νs→α = 0 ∀α 6∈ GP .
The dual is given by

g = sup
bsi (xi),b

s
α(xα),bα(xα)

L .

As the Lagrangian (4) nicely decouples, we can compute the dual in a term by term manner. To this end we make use of the
Fenchel theorem (f∗(p) = supx(px − f(x))) and its scaling property (f(x) = g(a · x) ⇒ f∗(p) = g∗(p/a)). We further
note that the Fenchel-Conjugate-Dual of the negative entropy subject to simplex constraints (f(x) =

∑
i xi ln(xi), s.t.xi ≥

0,
∑
i xi = 1) is given by the log-sum-exp function (f∗(x) = ln

∑
i exp(xi)) (cf. [2]).

To compute the dual w.r.t. bα(xα) we solve

∀α,xα, supbα(xα)−bα(xα)
∑
s∈NP(α) νs→α(xα),

which is identical to zero if
∑
s∈NP(α) νs→α(xα) = 0 and infinity otherwise.

We can therefore write the dual function g as

g =
∑
i

εci ln
∑
xi

exp

(
θi(xi)−

∑
α∈N(i) λi→α(xi)

εci

)

+
∑

s,α∈Gs

εĉα ln
∑
xα

exp

(
θ̂α(xα) +

∑
i∈N(α)∩s λi→α(xi) + νs→α(xα)

εĉα

)
(5)

subject to:

∀α,xα,
∑

s∈NP(α)

νs→α(xα) = 0, (6)

∀α 6∈ GP , νs→α = 0, (7)

which proves the claim.
The dual program is then obtained by minλ,ν g subject to above constraints. For minimization we perform block coordinate

descent on g using the steps defined in the following claim.

2. Proof of Claim 2
Claim 2 For every s ∈ GP , set µα→i(xi) to be

εĉα ln
∑

xα\xi

exp


θ̂α(xα) +

∑
j∈N(α)∩s\i

λj→α(xi) + νs→α(xα)

εĉα


then the block coordinate descent on λi→α(xi) takes the form

λi→α(xi) =
ĉα
ĉi

θi(xi) +
∑

β∈N(i)

µβ→i(xi)

− µα→i(xi),



where ĉi = ci +
∑
α∈N(i) ĉα. The block coordinate descent on νs→α(xα) subject to the constraints takes the form:

νs→α(xα) =
1

|NP(α)|
∑

i∈N(α)

λi→α(xi)−
∑

i∈N(α)∩s

λi→α(xi)

The block coordinate descent steps above are guaranteed to converge for ε, cα, ci ≥ 0, and guaranteed to reach the optimum
of (1) for ε, cα, ci > 0.

Proof: First, we show the block coordinate descent on νs→α(xα). To this end we assume λi→α(xi) ∀i, α ∈ N(i), xi to
be fixed. We then choose a factor α and minimize the dual g w.r.t. νs→α(xα) ∀s ∈ NP(α),xα. Consider that part of the
Lagrangian L∗α of the dual program in (5) that contains variables νs→α(xα) for a particularly chosen factor α, i.e.

L∗α = εĉα ln
∑
xα

exp

(
θ̂α(xα) +

∑
i∈N(α)∩s λi→α(xi) + νs→α(xα)

εĉα

)
+
∑
xα

γα(xα)
∑

s∈NP(α)

νs→α(xα),

Note that we have introduced Lagrange multipliers γα(xα) for the constraints in (6). To obtain the stationary point of L∗α,
the derivative of L∗α w.r.t. νs→α(xα) ∀s ∈ NP(α),xα has to fulfill

∀s ∈ NP(α),xα,
∂L∗α

∂νs→α(xα)
=

exp
(
θ̂α(xα)+

∑
i∈N(α)∩s λi→α(xi)+νs→α(xα)

εĉα

)
∑

xα
exp

(
θ̂α(xα)+

∑
i∈N(α)∩s λi→α(xi)+νs→α(xα)

εĉα

) + γα(xα) = 0.

For simplicity we need to consider only the numerator, while taking one degree of freedom in the normalization. Taking
the log of the numerator, and introducing some normalization constant β(xα), the above equation simplifies to

θ̂α(xα) +
∑

i∈N(α)∩s

λi→α(xi) + νs→α(xα) = β(xα). (8)

Summing both sides over s ∈ NP(α) we compute this normalization constant via

θα(xα) +
∑

i∈N(α)

λi→α(xi) = β(xα)|NP(α)|.

We obtain the block coordinate descent updates for νs→α(xα) given in the claim by plugging this result back into Eq. (8):

νs→α(xα) =
1

|NP(α)|
∑

i∈N(α)

λi→α(xi)−
∑

i∈N(α)∩s

λi→α(xi).

The first part of above claim, i.e. the block coordinate descent steps on λi→α(xi) follow in an analoguous manner. We
now assume νs→α(xα) ∀α, s ∈ NP(α),xα to be fixed. We then choose a node i and minimize the dual g w.r.t. λi→α(xi)
∀α ∈ N(i), xi. Consider again that part of the Lagrangian of the dual that contains variables λi→α(xi) ∀α ∈ N(i), xi, i.e.

L∗i = εci ln
∑
xi

exp

(
θi(xi)−

∑
α∈N(i) λi→α(xi)

εci

)

+
∑

α∈N(i)

εĉα ln
∑
xα

exp

(
θ̂α(xα) +

∑
i∈N(α)∩s λi→α(xi) + νs→α(xα)

εĉα

)
. (9)

We subsumed all variables that are not considered when optimizing λi→α(xi) for a particularly chosen i in

µα→i(xi) = εĉα ln
∑

xα\xi

exp

(
θ̂α(xα) +

∑
j∈N(α)∩s\i λj→α(xi) + νs→α(xα)

εĉα

)
.



L∗i given in Eq. (9) then simplifies to

L∗i = εci ln
∑
xi

exp

(
θi(xi)−

∑
α∈N(i) λi→α(xi)

εci

)
+

∑
α∈N(i)

εĉα ln
∑
xi

exp
(
µα→i(xi) + λi→α(xi)

εĉα

)
.

Computation of the stationary point amounts to solving ∂L∗i
∂λi→α(xi)

= 0 ∀α ∈ N(i), xi, i.e. explicitly:

exp
(
µα→i(xi)+λi→α(xi)

εĉα

)
∑
xi

exp
(
µα→i(xi)+λi→α(xi)

εĉα

) =
exp

(
θi(xi)−

∑
α∈N(i) λi→α(xi)

εci

)
∑
xi

exp
(
θi(xi)−

∑
α∈N(i) λi→α(xi)

εci

) ∀α ∈ N(i), xi.

Again, the denominator can be neglected when introducing a normalization degree of freedom. We consequently obtain
the proportionality

µα→i(xi) + λi→α(xi)
ĉα

∝
θi(xi)−

∑
α∈N(i) λi→α(xi)

ci
. (10)

Summing both sides ∀α ∈ N(i) results in

∑
α∈N(i)

λi→α(xi) ∝
∑
α∈N(i) ĉα

ci +
∑
α∈N(i) ĉα

θi(xi)−
ci

ci +
∑
α∈N(i) ĉα

∑
α∈N(i)

µα→i(xi),

which, when plugged back into Eq. (10), gives

λi→α(xi) ∝
ĉα
ĉi

θi(xi) +
∑

β∈N(i)

µβ→i(xi)

− µα→i(xi)
as claimed initially. Note that proportionality is used to stabilize the algorithm, e.g., by normalizing the messages.

Note that for ε, ci, cα > 0, g is convex and thus the block coordinate descent method is guaranteed to find the global
optimum. When any of these variables is zero, Danskin’s theorem states that its corresponding subgradient is the convex
combination of the maximal assignments (cf. [1]). We are guaranteed to converge as the dual is lower bounded by the primal.
We may however find a local optimum only, i.e., obtain a non-zero duality gap.

By abbreviating ni→α(xi) = expλi→α(xi), mα→i(xi) = expµα→i(xi) and ns→α(xα) = exp νs→α(xα) we obtain the
Distributed Convex Belief Propagation algorithm given in the main body of the paper.
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