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Abstract

Keypoint matching in images of indoor scenes tradition-
ally employs features like SIFT, GIST and HOG. While
those features work very well for two images related to each
other by small camera transformations, we commonly ob-
serve a drop in performance for patches representing scene
elements visualized from a very different perspective. Since
increasing the space of considered local transformations
for feature matching decreases their discriminative abili-
ties, we propose a more global approach inspired by the
recent success of monocular scene understanding. In par-
ticular we propose to reconstruct a box-like model of the
scene from every single image and use it to rectify images
before matching. We show that a monocular scene model
reconstruction and rectification preceding standard feature
matching significantly improves keypoint matching and dra-
matically improves reconstruction of difficult indoor scenes.

1. Introduction
Image matching is an important component of 3D scene

reconstruction [1, 18], image retrieval [28] and scene and
video completion [34, 13, 35]. Considering the variability
of the applications, a multitude of approaches have been
considered and evaluated in the past.

In general, all the approaches use some feature repre-
sentation for image keypoints and a distance metric to find
visually similar local patches. While the similarity mea-
sure is often chosen as the standard Euclidean distance,
the employed image features vary largely from variants of
the scale-invariant feature transform (SIFT) [22] and his-
tograms of oriented gradients (HOG) [8] to GIST descrip-
tors [25]. Importantly, all those image and keypoint rep-
resentations are very helpful in capturing local transforma-
tions such as rotation, illumination or scaling.

Hence, if we assume the data to be reasonably homo-
geneous, e.g., for small-baseline disparity map estimation,
a simple and efficient sum-of-squared-differences approach
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Figure 1. Image pairs that could not be matched by standard tech-
niques were successfully matched by MatchBox. The figure visu-
alizes geometrically verified keypoint matches. MatchBox found
100 matches in (a) and 99 matches in (b). The original images in
(b) are from the dataset of Furukawa et al. [11].

leveraging the pixel intensity as a feature works very well
in practice. For many other situations, however, matching
is often surprisingly difficult. In particular, if the observed
scene is similar only on a higher level; consider the transla-
tion and rotation of the camera as illustrated in the left and
right column of Fig. 1 for example. Due to the large trans-
formation, local pixel neighborhoods appear differently in
the image space and standard matching approaches often
fail in finding any corresponding keypoints.

The aforementioned issue is well known, as standard
keypoint detection typically finds an insufficient number of
keypoints in indoor scenarios, e.g., because of low-textured
walls. In addition, we note that standard techniques are
challenged by large camera movements typically present in
indoor scenarios. Therefore, we argue to differentiate be-
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tween indoor and outdoor scenarios and subsequently sug-
gest a solution specifically tailored for the indoor setting.
Restricting ourselves to indoor environments enables us to
employ the Manhattan world assumption, i.e., we model a
scene to be aligned according to three dominant and orthog-
onal directions defined by vanishing points [14, 33].

Hence our approach titled MatchBox retrieves keypoint
matches after a global scene estimation. We first predict a
coarse global scene representation for the observed scenario
using a textured 3D cuboid, estimated from each individ-
ual image. In the second step we rectify local constituents
instead of sacrificing discriminative power by only increas-
ing the space of local transformations. Using MatchBox on
the image pairs illustrated in Fig. 1 enables us to find about
100 matching keypoints that undergo a large transformation
while standard feature matching does not result in any cor-
respondences.

We evaluate MatchBox image matching on ten challeng-
ing image datasets and illustrate results that significantly
outperform standard approaches employed in frequently
utilized tools like Bundler [30].

2. Related work
In computer vision we often aim at designing general

approaches to tackle a specific task. This is particularly
true for object detection where classification approaches
are almost invariably based on SIFT [22], GIST [25] and
HOG [8] features or more recently deep learning meth-
ods. According to our opinion, image matching, a task fre-
quently employed in early stages of an application, is no
exception to this principle.

But designing a visual metric to ignore small, unimpor-
tant details while being capable of focussing on the impor-
tant structures that render two patches similar, remains a
challenge. This work presents an attempt to follow the intu-
ition that humans observe a novel scene by first establishing
a global correspondence before nailing small details.

Such an approach contrasts common image matching
methods which often directly focus on small local trans-
formations from the very beginning. The two central ele-
ments for finding corresponding keypoints are the feature
space and the similarity metric. Common keypoint repre-
sentations are the aforementioned cues, like SIFT, GIST
and HOG as well as various wavelet and gradient decom-
positions and combinations such as spatial pyramids [19]
or bag-of-words representations [29] which capture salient
structures that are however purely local.

To relax the aforementioned locality property of the con-
sidered transformations, image matching techniques were
predominantly extended in two directions. Either the space
of considered local transformations is modified, which in-
fluences computational efficiency and discriminative prop-
erties, or the distance metrics are adapted [23, 4, 3, 6, 10, 5].

Another line of work formalizes image matching from a
data driven perspective to learn a better visual similarity.
Tieu and Viola [31] use boosting to learn image specific
features and Hoiem et al. [17] employ a Bayesian frame-
work to find close matches. Contrasting the aforementioned
work which is based on multiple training examples, Shrivas-
tava et al. [28] showed how to achieve cross-domain match-
ing using structured support vector machines learned from
a single example. They illustrate impressive results across
multiple domains but their approach can still deal with only
minor viewpoint changes.

Instead of extending a standard image matching ap-
proach to deal with a larger number of local transformations
we subsequently follow the physiologic intuition by first in-
vestigating an observed scene from a more global perspec-
tive. To this end, we specifically consider image matching
for indoor scenes by leveraging the Manhattan world as-
sumption, the restriction that scenes are commonly aligned
to three dominant and orthogonal vanishing points. This
assumption was already utilized for 3D indoor scene re-
construction by Furukawa et al. [11] for depth-map estima-
tion. Although both [11] and MatchBox employ the Man-
hattan world assumption, both approaches differ in that [11]
assumes a piecewise planar scene and we make use of
cuboids.

Common to the most successful methods for monocu-
lar layout retrieval [14, 33, 20, 9, 26, 27] is the use of the
Manhattan world property. As a consequence, a simple pa-
rameterization of the 3D layout based on four variables ex-
ists [14, 33, 20]. By exploiting the inherent decomposition
of the additive energy functions with an integral geometry
technique [26], globally optimal inference of frequently uti-
lized cost functions was shown to be possible [27]. Given
high quality image cues known as geometric context [16]
and orientation maps [21], accuracies exceeding 85% are
achieved [27] on standard datasets [14, 15].

While image matching has been extended to take into ac-
count predominantly local transformations, we present the
first work for indoor structure from motion to use global
scene information for rectification of local patches as dis-
cussed next. Note that rectification based on global image
properties has been done for outdoor façades [7, 2].

3. Approach

Encouraged and inspired by the quality of the results ob-
tained from monocular scene understanding algorithms, we
aim at using global scene interpretation to improve keypoint
matching. In the following we first present an overview of
our approach and then describe the individual components
(scene estimation, image rectification and image matching)
in more detail.



(1) original image (2) orientation maps and geometric context (3) scene layout (4) rectification (5) tentative matches

Figure 2. The proposed MatchBox procedure. Given input images (1) we extract orientation maps and geometric context (2) which enable
optimization to find a scene interpretation (3). The scene estimate enables rectification of the detected faces (floor, ceiling, left, right and
front wall) (4) used for keypoint matching (5). This particular example could not be matched by standard approach whereas we obtained
20 tentative matches.

3.1. Overview

Consider Fig. 2 for an overview of the proposed ap-
proach. We are given a pair of images and first detect three
corresponding vanishing points for each image using the al-
gorithm from Hedau et al. [14]. Subsequently we minimize
an energy function to retrieve a 3D parametric box that best
describes the observed room layout. The energy function
is based on image cues which were proven valuable for in-
door scene understanding. Those are orientation maps [21]
and geometric context [16] which are described in greater
detail below and visualized in step 2 of Fig. 2. To minimize
the cost function, we employ a variant of a branch-and-
bound algorithm following [27] which is briefly discussed
for completeness in Sec. 3.2. The resulting 3D scene re-
construction is visualized in step 3 of Fig. 2. Given the
reconstructed scene, we rectify the prediction of the walls
individually as detailed in Sec. 3.3 and depicted in step 4.

We extract standard SIFT features from the rectified floor
and ceiling as well as upright SIFT from the rectified walls.
Next, we match the features, transform them back to the
original image and combine them with the result from stan-
dard feature matching. Afterwards, the correspondences are
geometrically verified using epipolar geometry.

3.2. Scene Estimation

For the scene estimation task, let the 3D layout be re-
ferred to via variable y. Optimizing for the best 3D interpre-
tation of the observed scene, i.e., finding y∗, is commonly
phrased as the general energy minimization problem

y∗ = argmin
y∈Y

E(y). (1)

To make this general framework more concrete we sub-
sequently first consider how to parameterize a 3D scene.
Hence we answer how to describe the space of all layouts
y ∈ Y . In a second part we detail the involved energy func-
tion E before we afterwards discuss its optimization. Note
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Figure 3. Parameterization of 3D layout estimation

that our exposition follows the approach described in [27]
and we refer the interested reader to this work for additional
details.

Scene Parameterization Following standard monocular
scene understanding literature [14, 33, 20, 9, 26, 27], we
use the Manhattan world assumption, i.e., we assume that
the observed scene is described by three mutually orthog-
onal plane directions. Taking a single image as input we
therefore detect the three dominant and orthogonal van-
ishing points {vp0, vp1, vp2} using the algorithm also em-
ployed by Hedau et al. [14]. Given those vanishing points,
we parameterize the observed room as a single 3D para-
metric box. With at most three walls as well as floor
and ceiling being observable, we follow the standard ap-
proach [14, 33] and parameterize such a box by four pa-
rameters yi, i ∈ {1, . . . , 4} each corresponding to an angle
describing a ray ri, i ∈ {1, . . . , 4} as visualized in Fig. 3.
Note that the rays r1, r2 are limited to lie either above or
below the horizon which is the line that connects vp0 and
vp2. To only parameterize valid layouts a similar constraint
is employed for rays r3 and r4. For efficient computation



we discretize the possible angles yi ∈ Yi = {1, . . . , |Yi|}
such that the space of all valid layouts Y =

∏4
i=1 Yi is a

product space describing a countable amount of possibili-
ties. To ensure a sufficiently dense discretization we let the
number of discrete states |Yi| depend on the location of the
vanishing points while making sure that the area within the
image domain covered by successive rays is smaller than
3000 pixel.

Energy function Having a parameterization of possible
layouts at hand, we score a given layout hypothesis y us-
ing an energy function E(y). We subsequently investi-
gate the structure of the employed energy function. Let
the five layout faces be subsumed within the set F =
{left-wall, right-wall, front-wall,floor, ceiling}. We design
an energy function which decomposes into a sum of terms
each depending on a single layout face, i.e.,

E(y) =
∑
α∈F

Eα(yg(α)), g : F → P({1, . . . , 4}) (2)

Note that the set of variables involved in computing a face
energy Eα is a subset of all variables, i.e., g denotes a re-
striction of (y1, . . . , y4) to (yi)i∈g(α) and hence maps from
a face α ∈ F to a member of the powerset P({1, . . . , 4}).
Importantly it was shown in independent work by many au-
thors [20, 9, 26] that the most promising image cues for 3D
layout estimation are geometric context (GC) [16] and ori-
entation maps (OM) [21]. We therefore let the face energy
decouple according to Eα = Eα,GC + Eα,OM. An exam-
ple for both image cues is given in step 2 of Fig. 2. Note
that their construction is different. While OMs are based
on sweeping lines to obtain one of five possible wall ori-
entations, GCs are computed using classifiers trained on a
dataset provided in meticulous work by Hedau et al. [14].

Scene model construction Using “integral geometry,” it
was shown by Schwing et al. [26] that the energy functions
Eα,· decouple for every wall face α into a sum of terms
with each summand depending on at most two variables.
This enables efficient storage. More importantly it was fur-
ther shown [27] that the geometric properties of the param-
eterization can be leveraged to design an efficient branch-
and-bound approach which retrieves the globally optimal
solution y∗ = argminy∈Y E(y) of the initially given opti-
mization problem stated in Eq. (1).

The approach proceeds by successively dividing a set of
layouts Ŷ = Ŷ1 ∪ Ŷ2 into two disjoint sets Ŷ1, Ŷ2, i.e.,
Ŷ1 ∩ Ŷ2 = ∅. A lower bound on the energy function is
computed for each set such that we know that any layout
member of the set scores equally well or worse. The sets
are inserted into a priority queue according to their score.
We iterate by retrieving the lowest scoring set to be consid-
ered for further partitioning until such a set contains only a

single element y∗. Despite having to evaluate all layout hy-
pothesis in a worst case, it was shown in [27] that such an
approach yields an efficient algorithm that partitions only a
few layouts in practice.

3.3. Image rectification

Finding the optimal 3D layout by solving the problem
given in Eq. (1) yields a result similar to the one visualized
in step 3 of Fig. 2, which enables a 3D reconstruction of the
observed scene up to scale.

To unfold the estimated and textured 3D parametric box
into a 2D image, we apply a homography to each wall as
well as floor and ceiling separately. Given the three van-
ishing points and the inference result being the four angles
yi, the four corners of the front wall are completely speci-
fied by intersecting the rays ri. Since we only observe three
walls as well as floor and ceiling, but not the closing wall of
the box, the other corners are not specified uniquely but are
computed such that no image region is cropped.

Hence, every wall is given by four points and we com-
pute a projective transformation to warp each quadrilateral
into a square-shaped image. The length of a side of the re-
sulting image is given by min (bh+w2 c, 1600) where h and
w are the height and width of the original image.

To give an example, let the four corners of the quadrilat-
eral describing the front wall be referred to via x1, . . . , x4 ∈
R2. We solve a linear system of equations to obtain the
transformation matrix Tfront-wall which projects x1, . . . , x4
to the corners of a square-shaped image. We subsequently
warp the texture of the front-wall to the square-shaped im-
age by applying a bi-linear transformation. The resulting
rectification upon processing all walls, ceiling and floor is
illustrated in step 4 of Fig. 2.

3.4. Image matching

Next we describe the two types of keypoint matchings
that we employ before we discuss their verification.

Tentative standard matches What we subsequently re-
fer to as “tentative standard matches” is computed follow-
ing the procedure employed in Bundler [30], except that we
replace the original SIFT features [22] with a publicly avail-
able SIFT feature computation and we utilize randomized
kd-trees for matching instead of a single kd-tree.

First, we find keypoints and corresponding 128 dimen-
sional SIFT descriptors on the given original pair of images
using the library by Vedaldi and Fulkerson [32]. To con-
struct possible matches, we find two nearest neighbors in
the 128 dimensional feature space using the fast approxi-
mate nearest neighbor procedure [24]. We establish a ten-
tative match between the feature in the first image and its
closest feature in the second image if the ratio of the dis-
tance to the closest over the distance to the second closest



Set # images # cameras # points Error
Std Ours Std Ours Std Ours

1 101 100 100 16118 34567 0.446 0.475
2 75 33 37 8620 12020 0.462 0.475
3 116 110 101 31358 38923 0.618 0.818
4 129 106 116 36628 50266 0.677 0.636
5 79 74 78 21949 28305 0.595 0.642
6 79 14 55 1209 11988 0.687 0.929
7 98 96 96 36860 34563 0.748 1.793
8 70 70 70 15170 27183 0.767 0.856
9 57 9 23 1369 3142 0.411 0.826
10 492 294 329 40688 72336 0.614 0.663

Table 1. The number of recovered cameras, the number of reconstructed 3D points and the average reprojection error obtained with the
standard matches only and with our proposed approach for ten different datasets.

feature point is smaller than 0.6, i.e., we only regard two
keypoints as tentative matches if there is a sufficient dis-
tance between a possibly disambiguating point that might
arise from repetitive structures such as windows or picture
frames.

Tentative scene model matches To obtain what we refer
to as “tentative scene model matches” we detect keypoints
and corresponding feature vectors using [32] on the rectified
images illustrated in step 4 of Fig. 2. We compute standard
128 dimensional SIFT descriptors on the floor and ceiling,
and employ the more discriminative upright SIFT feature
computation on the three possible walls. We use upright
SIFT only on the walls since we assume their structure to
be aligned with gravity.

Similar to the aforementioned standard matches and in
order to filter out keypoints arising from repetitive struc-
tures, we find two nearest neighbors [24] and accept a ten-
tative match only if the distance ratio does not exceed a
threshold of 0.6. To gain computational savings, we match
only ceilings with ceilings, floors with floors and walls with
walls. In a last step, we transform all the tentative keypoints
from the matching domain back into the original image do-
main using inverse mappings for every wall, e.g., T−1front-wall.
The resulting tentative scene model matches refer to the set
of all matches, i.e., matches of ceilings, floors and walls.

Verified matches In our experiments we compare the
standard matching with our proposed approach combining
both, the matches obtained with the standard approach aug-
mented by the matches obtained with the scene model ap-
proach. Even if a scene model is estimated incorrectly, we
have at least as many matches as the standard procedure.

To filter outliers from both sets, we let Bundler [30] ver-
ify them. First, the epipolar geometry is estimated using
an eight-point algorithm [12] inside a “vanilla RANSAC.”
A tentative match is defined as an outlier if the residual for
the generated fundamental matrix fails to lie within a pre-

defined threshold of 9 pixels. A total of 2048 epipolar ge-
ometries are investigated. If the best epipolar geometry is
supported by 16 or more matches then the inlier matches are
retained. Otherwise, the hypothesis is rejected as unreliable
and the set of verified matches remains empty.

4. Experiments
In the following, we evaluate our proposed approach on

10 challenging datasets, each visualizing a particular indoor
scene. These datasets contain 101, 75, 116, 129, 79, 79, 98,
70, 57 and 492 images each, as summarized in Tab. 1. Every
dataset visualizes an indoor scene showing living rooms in
set 1 and 5, a bathroom in 2, kitchens in 3 and 8, general
rooms in 4 and 6, a library in 7, an empty room with white
walls in 9, and a whole floor of a gallery in 10. The dataset
referred to by 10 is obtained from Furukawa et al. [11].

4.1. Quantitative Evaluation

We show results of our approach combining the standard
matches and the scene model matches (denoted by Ours) in
comparison to results of the standard method (denoted by
Std) which utilizes only the standard matches.

In Tab. 1 we compare the 3D reconstruction results ob-
tained with the standard approach and with our MatchBox
algorithm. Reconstruction is carried out by Bundler [30].
We show the number of cameras that were recovered, the
number of 3D points that could be reconstructed and addi-
tionally we provide the average reprojection error. Match-
Box is able to reconstruct more cameras on six out of ten
datasets while we are on par with the standard approach
for three sets of images. Considering the number of recon-
structed 3D points as our score we want to maximize we are
able to improve over Bundler on nine image sets. On the
other hand, the average reprojection error is better only for
one of the ten datasets. This is connected to the fact that the
final optimization contains more cameras and/or more 3D
points. Note that worse reprojection error does not mean



Set
# matches # pairs Graph diameterTentative Verified Tentative Verified

Std Ours Std Ours Std Ours Std Ours Std Ours
1 102 166 108 178 890 1120 805 981 7 5
2 121 130 134 161 405 510 317 339 12 10
3 144 139 160 227 972 1709 776 849 7 6
4 178 178 234 280 1238 1641 841 890 8 8
5 197 199 213 249 550 760 469 527 6 5
6 94 121 100 129 279 313 231 246 9, 2 6, 2
7 272 361 349 537 1846 2276 1286 1320 6 6
8 188 284 189 288 1183 1278 1022 1070 5 4
9 78 121 84 120 257 271 160 172 (4 + 2), (4 + 5), 1 6, 9, 1
10 95 137 97 138 6415 6968 5264 5835 21 19

Table 2. The average number of tentative and verified matches and the total number of matched image pairs before and after verification. In
addition and separated by ‘,’ we show the graph diameter for all connected components of size larger than two obtained with our approach.
If such a component is disconnected when utilizing the standard, we show diameters of all the sub-components that got connected in
parenthesis, separated by ‘+’.

Figure 4. Nodes represent images of the dataset 9. An image pair is
connected by an edge if it is matched and verified by the standard
approach (magenta) or our proposed method (green+magenta).
We observe how MatchBox is able to reduce the number of con-
nected components obtained with standard keypoint matching.

worse true reconstruction error.

For two datasets the additional features surprisingly re-
sult in worse reconstruction. Less cameras were recovered
for the image set 3 and the reprojection error of the recon-
structed dataset 7 is too high. This is due to the fact that our
approach matches similar structures just like the standard
matching. Therefore, if a scene contains repetitive struc-
tures, which can be falsely matched, our method can in-
crease also the number of false matches and not just correct
ones. Since the eight-point algorithm [12] is employed for
verification, false matches might not get rejected if they lie
on a plane which is often the case for indoor scenes. Higher
contamination with false matches can therefore cause worse
reconstruction. To fully exploit the benefit of our contribu-
tion in structure from motion pipelines, this problem has to
be addressed.

Next we aim to evaluate the merit of incorporating a
more global scene representation. Therefore we consider
a graph where vertices represent images and two vertices
are connected via an edge if we found matching keypoints
on both image pairs after verification. See Fig. 4 for a visu-
alization of such a graph where nodes are ordered according
to the connected components. If a graph consists of more
than one connected component, 3D reconstruction will omit
some images. Hence we want to minimize the total num-
ber of connected components. In Fig. 4, green edges il-
lustrate the additional pairs matched by our approach. Note
that our method takes advantage of both, standard and scene
matches. Therefore, we observe how the additional matches
successfully connect components for dataset 9 visualized in
Fig. 4.

Not only are we interested in minimizing the number
of connected components but we are also aiming for many
connections between images. In Tab. 2, we compare stan-
dard matching to our approach using the average number
of matches between image pairs as well as the total num-
ber of matched image pairs. For an additional error metric
capturing the connectedness of the matched image pairs, we
propose to utilize the graph diameter of a matching, i.e., the
maximum length of all the shortest paths. Hence the graph
diameter measures how tightly we are able to connect the
different images. We provide the diameter for all datasets in
Tab. 2 using the connected components of size larger than
two found with our approach. We observe that MatchBox
performs very well in all the metrics.

4.2. Qualitative Evaluation

Having shown that our proposed approach outperforms
a standard matching algorithm on a set of ten indoor scene
datasets for various error metrics we next provide some typ-
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Figure 5. (a) visualizes verified matches of our approach. The standard method would not retrieve any matches while we match 105, 65
and 221 keypoints respectively. Cyan color depicts detected scene interpretation. (b) and (c) visualize verified matches found on the same
image pairs except that (b) illustrates results obtained by standard matching and (c) provides our MatchBox performance. We observe that
our approach exploits knowledge of the scene and matches more keypoints (standard approach was able to match 20, 30 and 28 keypoints
and we obtained 105, 121 and 98). The original images on the left and on the right in (a) are from Furukawa et al. [11].

Figure 6. Visualization of an incorrectly matched image pair. The
color green visualizes verified matches obtained by our approach
and the color cyan shows detected scene layout.

ical examples.

In Fig. 5(a) we visualize verified matches obtained with
our proposed approach. The standard matching, did not re-
trieve any matching keypoints. For completeness we over-
lay the image with the predicted room layout.

In Fig. 5(b) we show verified matches obtained with the
standard keypoint matching and compare them to our pro-
posed approach with results visualized in Fig. 5(c). Again,
we observe significantly more matches.

In Fig. 6 we show a wrongly matched image pair. The
image pair was incorrectly matched since tiles had the same
pattern but they were situated on different walls.

Additionally, we visualize a comparison of sparse 3D re-
constructions in Fig. 7.

5. Conclusion

In this work we proposed to employ monocular scene
understanding to improve image matching for indoor envi-
ronments. Importantly, we suggested to follow the physi-
ological concept of first reconstructing a global scene rep-
resentation before matching salient details via commonly
utilized image features that focus on local transformations.
We showed that our proposed approach outperforms stan-
dard keypoint matching on challenging datasets illustrating
various indoor scenes.
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